Fat Facts: Omega 3 and Omega 6 Fatty Acids

Fat Facts: Omega 3 and Omega 6 Fatty Acids

Omega-3 fatty acids —EPA and DHA— are the BIG news in nutritional m medicine today — and for some very good reasons. The scientific evidence is now irrefutable that EPA and DHA are essential for good health and long life. They are such important nutrients that agencies and institutions historically hostile to nutrition have gone on record to support their use. The American Medical Association, the American Heart Association, the United States Department of Agriculture (USDA), even the good ol’ “Food and Drug Administration (FDA),” are all praising EPA and DHA.

While all of this is certainly a positive development, the rise in sales of omega 3 (n-3) fatty acid is in direct response to the high press coverage. It’s like everybody on the globe is jumping on the omega 3 fish oil bandwagon. The result of this excessive reporting in the media with relatively little knowledge of fatty acid chemistry, has lead to overindulgence (prescribing and taking too much). TThis overzealous use of omega-3 fish oils has occurred worldwide at a disturbing rate.

At BodyBio we have been observing these results through the in-depth examination of thousands of individual fatty acid tests, year after year. Analyzing red blood cell fatty acids (RBCFAs) is a principal part of what we do at BodyBio. The bioactive ingredients of fish oil, EPA and DHA, are generally found in a ratio of 3 to 2 (180 mg of EPA and 120 of DHA). They are both dynamic and powerful nutrients, with a wide range of functions that influence the brain, the sensory organs, synaptic and cardiac activity, and the modulation of arachidonic acid effects in inflammation. All membrane fatty acids are intimately involved in regulating all aspects of the body’s chemistry, including control of each others’ families, the 6s and the 3s. However, excess omega 3s will easily suppress the omega 6s, whereas the reverse does not seem to occur; 6s do not suppress the 3s.

If we follow the popular media mantra, we are led to believe that adding fish oil to the diet will improve our wellbeing by raising the omega 3s and avoiding / lowering the omega 6s. This should be a good thing, since any suppression of omega 6 arachidonic acid would tend to reduce inflammation and lead to a healthier state. However, based on our research and the testing of red cell lipids over the years, we have found the opposite to be true. Dr. Patricia Kane’s own findings concur.

To understand the fatty acid disturbance we see requires a shift in thinking about omega 6 fatty acids and inflammation. While inflammation can be disturbing, in itself it should not be regarded as bad. Aside from the correction that the body undertakes to alleviate the stress that results in inflamed tissues, it is predominantly sending a signal, a message that something is wrong. We certainly want to suppress the disturbance, but the last thing we should be doing is killing the messenger, which is exactly what fish oil does.

More than 80% of the BodyBio red cell fatty acid tests performed yearly* register high omega 3s and low omega 6s. There is a direct correlation with the amount of fish oil consumed and the elevation of EPA and DHA. Associated with the distorted fatty acid analysis is a wide array of disorders, such as fatigue, irritable bowel syndrome, nausea, eczema, headaches, visual disturbance, memory loss, etc.

While we are told that omega 6s are “bad guys,” there is really no such thing. If it is essential, as omega 6s are, and the body spends precious energy to create and maintain it, it is wrong to assume that the metabolic effort is misdirected. Maybe too little or too much — but certainly not bad. Currently, there is no way for humans to survive without omega 6 fatty acids. This includes arachidonic acid (AA), containing 4 double bonds and occupying as much as 14% of the red cell membrane.  Arachidonic acid also boasts the highest concentration of energy in the membrane as the lead regulator of all cellular signaling, and quite possibly of all regulation in the body. As we have recently seen and hereby report the suppression of AA in a large number of individuals by the over-consumption of fish oil has been directly responsible for an unusual increase in physical and mental distress.

Our approach is to remove fish oil from the diet for a time and to encourage a nutrient-dense diet that is low in carbohydrates and rich in omega 6 fats from foods that include egg yolks, evening primrose oil and a blend of cold-pressed safflower and flaxseed oils (BodyBio Balance Oil delivers a 4:1 ratio of linoleic acid to alpha-linolenic acid.).  Together with essential vitamins and minerals, these dietary inclusions help to elevate lower-order EFA saturation levels. The patients, after shifting their diet and supplementation, consistently report that they all improve. In the world of medicine one should never say all, however, we repeat, all patients tend to reverse their negative symptoms by bringing their omega 6s and their omega 3s back in balance.

It is, after all, about balance. Is fish oil bad for you?? Of course not! The error, either by self-medication or by being over prescribed, is an excessive expression of omega 3s which can occur with any drug or nutrient. Also required, and in part because the medical reliance on fatty acid nutrition is quite new, is a new-found respect for the metabolic power of the omega 3s, especially EPA. Without the valuable analysis from the world’s premier fatty acid laboratory, we would never have been able to make this analysis and relay to you how to readjust your patient’s essential fatty acid balance. We would have no reference to do so.

*The vast majority of BodyBio Red Cell tests were performed on individuals who had been seeking medical help for a period of time before consenting to do an Fatty Acid Analysis. Fish oils were commonly employed in their effort to find relief. The 80% referred to above is unusually high but is the result of 1) that narrow select group and 2) the individuals personal reporting of the use of fish oils often over several years. Would this have been the case 20 years ago? Probably not.

CASE HISTORY #1 Annette was determined that she would not follow in her family’s footsteps in regard to her health. To hold off aging and ill health she used 10 capsules daily of fish oil, restricted all meat, eggs and dairy in her diet and limited her intake of all oil except olive oil that she used in her salad and to cook with. After two years of high fish oil intake, Annette noticed that she was developing eczema. Her allergies got much worse and she felt tired all the time. Her moodiness was irritating to others but worst of all she had developed severe difficulties with her ability to think and perform at work. Annette visited a physician specializing in fatty acid therapy and longevity who tested her red cell lipids and found them to be alarmingly unbalanced. Her omega 3 EPA was 1500% high while her omega 6 Arachidonic Acid was 156 % low and her omega 6 Gamma Linolenic Acid was 94% low. Her doctor explained the importance of balance of her fatty acids and set up a targeted nutritional protocol for her. After two weeks of getting on the correct balance of fatty acids Annette felt much better. Her eczema started to clear, her mood stabilized, her energy and alertness returned and she found her work performance normalized. After 6 months of re-balancing Annette’s physician allowed her to begin fish oil with one capsule of Kirunal daily along with wild salmon and sardines, evening primrose, 4:1 omega 6 to omega 3 balanced oil, and eggs / butter in her diet.

 

The literature is replete with information on the value of omega 3, with little on the value of omega 6. It is much too deep and complicated a subject to address in brief; however, the omega 6 family is by far the predominant fatty acid family, having vast number of management functions throughout the body. The power of EPA, at ~ 0.46% of the red cell compared to ~14% of arachidonic acid, is relegated to modulate and down-regulate arachidonate, thereby refining function and raising performance to a higher level, which it effectively does. A look inside the retina provides an excellent example of the specialization of the two fatty acid families.

There are 100 million photoreceptor cells responsible for sight in each retina. To perform at a high level they require the optimal lipid energy available in the membranes of the outer segment of the cell. Predators such as cats, bears, birds of prey, all carnivorous life in the oceans, and especially primates have a high concentration of DHA, a 22 lipid carbon chain. DHA has the highest number of double bonds <6> within that chain. The more double bonds, the higher the energy value.

In primates, particularly humans, the membrane of the eye contains ~50-55% DHA (the highest in the body, the brain has ~17- 22%). Grazing animals have ample access to the lowest order of omega 3, alpha linolenic (ALA), which begins the n-3 family with 3 double bonds. ALA is high in green leafy vegetation, although the fatty acid content is low. However, grazing animals cannot efficiently metabolize ALA up to DHA. We are also inefficient in this process, however, we are a predator - we can eat fish and get all the DHA we need. Small mammals, such rats are 100% efficient in fatty acid metabolism. The big grass eaters use instead a 22 carbon omega 6, which they metabolize up to 5 double bonds, the maximum number for the n-6s.

There is a dramatic difference in the energy value of a 22 carbon n-6 with 5 double bonds contrasted to a 22 carbon n-3 DHA with 6 double bonds. That difference registers with a significant improvement in eyesight, which gives all predators a leg up in survival. The big cats can watch the herd close u,p whereas the antelopes have to raise their noses high in the air and sniff, hoping to get a sense of what’s out there. That’s a huge advantage. In addition, the higher concentration of DHA in our predator brains translates to higher intelligence since DHA is directly involved with synaptic activity and brain function. However, it does not correlate that an over-expression of DHA will increase brain power in adults, but if the mother does not take in sufficient omega 3 HUFAs (highly unsaturated fatty acids with DHA) during pregnancy or when nursing, the baby’s intellect may not fully develop. The pregnant mother needs generous intakes to nurture her fetus throughout pregnancy. Postpartum depression has in fact, been linked to omega-3 deficiency. The newborn needs it to build and mature all the organs. Older children need the omega-3s to help them function in school and avoid behavioral problems. Parents need them also, perhaps even more so.

BodyBio Kirunal - a Non-Oxidized Fish Oil 

Getting these vital fatty acids into the body has presented a challenge of purity, itself a concept that encompasses more than a single idea. Acquiring oil from fish is not as simple as getting juice from an orange, where a single earnest squeeze yields results. In juice, there is nothing that needs to be separated, unless pulp is an issue. With fish bodies, there are concerns with removing proteins, environmental insults like heavy metals and micro-organisms, and even ancillary fats that might impede EFA/DHA uptake.

Practically endless discussion has pitted the triglyceride (TG) form of fish oil against the ethyl-ester (EE) form in terms of bioavailability, safety and efficacy. Looking at myriad scientific reviews, we conclude that the differences are minor and inconsequential, unable to be judged as physiologically or clinically significant. So far, it seems that once a steady state of supplementation has been achieved, the biological outcomes are alike. In fact, most CVD-related trials have used the EE form and the National Eye Institute uses it in its AREDS 2 trials (West, 2016) (Ackman, 1992). Clouding the matter is that humans absorb these fats through different routes:  preduodenal, lymphatic via chylomicrons, and the route that uses the portal vein to the liver. Thus, it is difficult to compare results. It is the EE form that has been recommended for standardization (and has been used to manufacture a pharmaceutical fish oil).

BodyBio Kirunal is derived from fish bodies by a process that uses supercritical fluid extraction based on the very low temperatures of solid carbon dioxide. This process provides an oxygen-free media, therein preventing the oxidation and eventual rancidity common to most fish oil products on the market. It further allows extracting selectively low polar lipid compounds, thus avoiding the co-extraction of polar impurities that include inorganic substances, such as heavy metals.

If there be a limitation to supercritical CO2 extraction, it is the increased cost, not only because of the high-pressure equipment, but also because the raw material needs to be freeze dried in order to reduce moisture below 20% and to keep the n-3 fats, the delicate PUFA’s, unaltered. The high level of n-3 fats in supercritical CO2 extraction surpasses all other processes, largely due to low temperatures and a non-oxidant atmosphere. Rarely does the temperature reach 104° F (40 ° C).

There is no detriment to appearance of the oil liberated in this manner, since color, neutral lipid composition and fatty acids profiles are similar. Important are oil acidity, total oxidation value, inclusion of volatile compounds, sensory properties and heavy metals, all of these characters favoring the supercritical CO2 method. Here, fishy off-flavors are eliminated and the potential for a trimethylamine miasma removed.

To BodyBio’s delight, in spite of the high initial investment, refinement costs and downstream processing eventually make the process competitive in that it may likewise be used to make specialty oils, such as nut oils and seed oils.

EPA and DHA are large and spacious n-3 fats, unable to sit next to each other on a single glycerol molecule. Therefore, most fish oils do not contain more than about 30% EPA and DHA. To increase concentration, these fatty acids can be removed by converting them to ethyl esters. Once they are freed, their concentrations are enriched. Supercritical extraction is able to reduce or eliminate cholesterol and contaminants that include the typical environmental insults, such as dioxins, PCB’s, and heavy metals, offering an EPA/DHA content in excess of 60%. Extending the process to feature supercritical fluid chromatography, 90%+ concentrations may be realized.

Molecular distillation, long the darling of the fish oil trade, suffers as much as 350% higher thermal stress than supercritical fluid extraction, and a much lower capability to selectively extract the essential fats desired. Attaining 95% EPA and DHA gives BodyBio Kirunal a triple value in a single capsule.

Fat Facts: Separating Fat From Fiction

Our life blood is in the sources of fatty acids we ingest to nourish our bodies. The media circus makes it difficult to separate the factoidal wheat from the chaff. The internet would have us believe that fish oil is the answer to all of life’s aches, pains and decrepitudes, and that omega-6 (n-6) fatty acids, especially the linoleic acid that is common to seed oils, is the scourge of our well-being. Nothing could be further from the truth.

Here Are The Facts In A Nutshell:

All essential fatty acids are just that – essential. Removing an essential fatty acid from the diet will likely lead to serious medical conditions. The omega-6 fats in the food supply include linoleic, gamma-linolenic and arachidonic acids. Although health enthusiasts now agree that pasture-raised butter and free-range eggs are healthy, they draw the line at seed oils, labeling linoleic acid as especially detrimental to health. However, these purveyors of misinformation have no qualms about pushing the consumption of nuts, which are heavy in monounsaturated fats and shallow in the polyunsaturated omega-6s. The judgment that n-6 fats are unhealthy arose from their capacity to drive inflammation by converting to arachidonic acid (AA), a physiological process actually lacking in efficiency and reliable outcome. Nonetheless, indisputable is that Linoleic acid (LA) is a primary essential fatty acid vital to the mitochondria. Do you see the problem? No one checked the medical facts. Linoleic acid is crucial to health. To settle the dispute, not one medical paper, not even from the most respected lipid researchers, has found LA to be a threat to health at all.

So What Is Bad For The Body?

Toxic fatty acids from heated, overheated and continuously-heated oils are harmful. The greater is their unsaturation, the greater is their toxicity. While there is no doubt that trans-fats are vile, toxic fatty acids are worse. What they exact upon the brain and body is frightening.

Have you ever noticed a health food store chains with prepared food cook in canola oil? They actually fry chicken in canola oil! Canola is a genetically-modified, polyunsaturated oil that creates dangerous aldehydes when heated to cooking temperatures. These formaldehyde cousins eventually embed themselves into our lipid membranes, causing inflammatory responses and a menagerie of diverse problems. Is olive oil any better? A monounsaturated omega-9, it contains oleic acid, a fatty acid whose health benefits are heralded, but whose associated polyphenols display more salubrity by modulating the oxidation of blood lipids, this according to a 2011 report by the European Food Safety Authority. A monumental concern, made public recently, is that olive oil is being diluted as much as 70% with sunflower, canola, walnut and other polyunsaturated fatty acids (PUFAs).  These relatively tasteless adulterants contribute to aldehyde toxicity when heated. Even at two dollars an ounce, first-cold-pressed extra virgin olive oil may be a contaminated fraud. At its finest, (extra virgin) olive oil serves better as an enhancement than as a cooking oil, unless its temperature is carefully monitored, lest its phenolic promises be compromised. It is prudent to avoid cooking with any monounsaturated (avocado, olive) and especially with polyunsaturated oils (grape seed, sesame, canola, safflower, sunflower, corn) due to their PUFA content. It is advisable to cook at moderate temperatures, using coconut oil, animal fats, or butter/ghee. Get back to basics; guess what our grandmothers used?

To our disappointment, a majority of polyunsaturated fats have become hybridized without our knowledge, leaving us with altered products that fail to deliver the health benefits we once enjoyed. What is now high-oleic sunflower or safflower oil is not the same healthful fat we used to know. To compound matters, the food supply has become a nationwide, uncontrolled experiment in culinary and dietary manipulation, offering the spoils to the victorious industry and the spoiled results to the victims. Salad dressings, mayonnaises and assorted fat-related condiments have suffered a similar fate.

If people are destroyed for lack of knowledge, it is doubly so in the realm of fatty acids. To render false information is lying, but to hide information is also a lie. In this regard, we have been deprived of knowing the details of omega-6 pathways, having been told only that omega-6s present with inflammatory compounds as end-products. First, let’s be aware that pre-formed AA, provided by meat and its fat, and by butter and cream leads to the essential series 2 prostaglandins. Albeit pro-inflammatory, these prostaglandins are the lead eicosanoids in the body and are crucial to maintenance of our health. For example, without them there would be no healing of a cut, since white blood cells and platelets would not be beckoned to the scene. Linoleic acid, the mother n-6 fatty acid, is the premier support of cardiolipin and the mitochondria. LA is converted by enzyme activity to gamma-linolenic acid (GLA), dihomo-gamma linolenic acid (DGLA) and eventually to the anti-inflammatory series 1 prostaglandins. 

The second tidbit to which we need attend is the potentially virulent, toxic and inflammatory character of oils exposed to elevated temperatures. The problem does not come from linoleic acid or any other n-6 fat! We have seen microscope images of cell membranes that have been assaulted and battered by these debased and corrupted lipid entities, particularly in the membranes of individuals suffering autoimmune and neurological diseases, where aberrant, renegade lipids have become attached to their DNA, effectively altering gene expression from epigenetic insult. Removal of aldehyde-ridden supermarket oils from the diet is mandatory if optimal health is our goal. Though not top heavy with PUFAs, olive oil is likewise categorized.

Third in the list we find that essential fatty acids (EFAs) appear in echelons of physiological activity. The lower-echelon fats include linoleic acid (from sunflower seeds, high-linoleic safflower oil and high-linoleic acid sunflower oil) along the n-6 branch, and alpha-linolenic acid (from flaxseed oil, chia seeds and walnuts) along the n-3 branch. The higher-order fatty acids include arachidonic acid (from cream, egg yolks, cheeses and meat) along the n-6 branch, and EPA / DHA (from marine sources) along the n-3 branch.

The fourth item of interest tells us that monounsaturated fatty acids (MUFAs) and saturated fatty acids (SFAs) are not essential, meaning that the body can make them from the diet. These fats offer us only calories and gustatory satiety; they are not bioactive lipids. Avocados, olive oil and tree nuts provide MUFAs, while coconut oil and coconut butter, cocoa butter, meat fats, and dairy butter give us SFAs.

The quality of our Life is riveted in the lipids we ingest as they pivotal in the health of the cell membrane and as we have come to understand… the membrane is everything in optimizing our state of health.

Most Important To Avoid To Regain And Stabilize Health:

  • All fried food including French fries unless cooked at home in coconut oil

  • Fast foods, almost all contain heated, toxic oil

  • Commercial foods organic or not, almost all contain heated, toxic oil

  • Hydrogenated vegetable oil, margarine, processed oils

  • Canola oil -often in processed foods / dressing, contains very long chain fatty acids

  • Peanut butter, peanuts, peanut oil, contains very long chain fatty acids

  • Mustard- contains very long chain fatty acids

  • Commercial mayo or salad dressing, use homemade with high linoleic safflower instead

  • Most olive oil, limited availability of the pure oil, difficult to tell which one is pure

  • Commercial oils, high-oleic hybrid oils, including those labeled organic

Lipids, Oils And Fats You May Be Included In The Diet, But Don’t Contain Bioactive Lipids:

  • Organic coconut oil, useful in cooking

  • Olive oil, caution – limited availability of the pure oil, does not contain bioactive lipids

Lipids, Oils And Fats That Contain EFAs To Include To Optimize Health:

  • Concentrated phospholipids as PC and PE from BodyBio

  • 4:1 omega-6 to omega-3 oil, SR-3, as BodyBio Balance oil

  • High Linoleic, organic, cold pressed Safflower oil (this is imported)

  • Nutiva® Organic Hempseed oil

  • Evening primrose oil, pure cold pressed (not sourced from China)

  • Wild caught, cold water fish

  • Caviar, Anchovies, Sardines from clean waters, not farmed

  • Free range, organic egg yolks

  • Raw, organic seeds-hemp, chia, sunflower, pumpkin, fenugreek, sesame

  • Homemade kefir (cow, goat, sheep, camel)

  • Limited amounts of grass-fed, free-range sources of dairy (cow, goat, sheep, camel) butter, ghee, cream

Alterations to the food supply explain the fifth entry. Where sunflower, safflower and soybean oils once were high in linoleic acid, they now are high in oleic acid, ostensibly making them candidates for the sauté pan, a place where they will still be denigrated and debased, yet a bad thing, although at a slower rate. The damage done to an oil that has been heated and reheated in a fast-food restaurant or local diner is mind-boggling. It’s little wonder that these oils are reclaimed to be used as biofuels in diesel engines. Using them in salad dressing or atop steamed vegetables is one thing, but cooking with them is quite another. No matter the molecular nature, a heated MUFA / PUFA oil is ultimately toxic.

Sixth in our hit parade is the contraindication of marine oils in the treatment of childhood seizure disorders, where administration of such has only exacerbated the condition. Here, the DHA fraction impinges upon the NMDA receptors and stimulates excitation, while the EPA moiety suppresses beta hydroxybutyrate, the primary ketone. Aggravating the matter is that most commercial fish oils are processed using elevated temperatures for extraction, leading to aldehyde formation and degradation of the fatty acids. Thus-damaged fish oils are toxic. On the other hand, wild fish, the ultimate source of marine oils, are not. Salmon, anchovies, sardines and caviar are preferred.

To realize that coconut oil, olive oil, and avocado oil, among a few others, are not essential fatty acids makes number seven in our list. Coconut oil and MCT oil produce ketones quickly, not needing bile to be digested and absorbed. Since coconut does not contain EFAs or MUFAs, it may be used for cooking.

Number eight is worthy of fanfare and flourish. Oils that carry very-long-chain fatty acids are a considerable challenge to the liver and the brain. Because of their size, they dangle outside the mitochondrial membrane, so need peroxisomes to be metabolized, to be burned or beta oxidized. Mustard oil, canola oil, peanut oil and peanut butter are sources.

Knowing the ninth entry introduces us to the bioactive oils that display EFAs and phospholipids crucial to optimal health. In this camp we find Specific-Ratio 3 or SR-3 oil as a prime source of a balanced 4:1 omega-6 / omega-3 ratio, featuring organic, cold-pressed, non-GMO safflower and flaxseed oils as the mother fatty acids. Related bioactive oils are high-linoleic safflower oil, raw organic seeds (sunflower, hemp, pumpkin, chia) and seed creams (soak overnight, blend), Canadian evening primrose oil, wild cold-water fish (especially caviar, anchovies, sardines), free-range eggs (the yolks).